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ABSTRACT

A procedure for performing sensitivity analyses of data vis-a-vis

the multivariate error model, with or without structural variables, is

proposed. It is based on an estimation procedure, a generalization of

maximum likelihood, which is izdexed on a user-specified value c. The

sensitivity analysis proceeds in the following way: the parameters of

a set of data presumed to follow a multivariate normal error model are

estimated via maximum likelihood (c-0). The parameters are next esti-

mated for an index c 1 > 0. The sensitivity in parameter estimates is

noted. The parameters are next estimated for a user-specified index

c 2 > c1 > 0 and the sensitivity of the parameter estimates to the

change in c is again noted. This process may have one or more values

of c > 0. If the parameter estimates are sensitive functions of. c, the

model and the data are not mutually consistent and both require further

detailed study. The items of data which are most contributory to this

sensitivity are identified by an examination of observational weights

which are a byproduct of the analysis. If the parameters and observa-

tional weights are non-sensitive to changes in the index c, then one can

generally be confident of the internal consistency of the data and the

error model. Fixed values of the index c provide robust estimation

procedures for model parameters. Asymptotic relative efficiencies and

influence functions are provided for fixed values of c. The results of

a small Monte Carlo study suggest that the asymptotic properties of the

estimators are rapidly attained. Several illustrations are given.



1. Introduction

A number of robust procedures for the analysis of p-dimensional

Gaussian (normal) data have been proposed by Gnanadesikan and

Kettenring (1972), Devlin, Gnanadesikan, and Kettenring (1975), Maronna

(1976), Huber (1977), Mosteller and Tukey (1977), Devlin, Gnanadesikan,

and Kettenring (1981). A number of numerical and statistical character-

istics of these procedures have been evaluated in Devlin et al. (1981).

Summaries and further discussion of multivariate robust procedures are

given in Gnanadesikan (1977), Barnett and Lewis (1978), and Huber (1981).

Despite the impressive range of work in the problem of robustness and

allied topics, there is still a need for a unified approach to the

subject, preferably one based on an objective function.

We propose a procedure for the analysis of multivariate Gaussian

data which is based on a generalization of maximum likelihood which has

recently been considered in the univariate context by Paulmon. Presser,

and Nicklin (1982). The estimation procedure depends on a user-specifi.A

index c which may be varied to determine (a), the response of the

parameter estimates to variation in this index, and (b), the response

of observational weights associated with each observation to variation

in this index. The response surface generated permits a sensitivity

analysis which is useful in assessing the mutual consistency of the model

and the data considered as a sngle entity. If the parameter estimates

and final observational weights are not sensitive to variation in the

user-specified index, then it is highly likely that the data and the

model are internally consistent. If the parameter estimates and final

weights are sensitive to variation in the user-specified index, then

1
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it is likely that the data and the model are not internally consistent

for any of a variety of reasons. Thus the procedure we are proposing can

be quite useful in the identification of potential outliers.

Our procedure produces robust estimators of the mean vector and the

covariance matrix by simply taking a fixed value of the user-specified

index c. Asymptotic properties are given for several values of the

user-specified constant and for several values of the dimension p. Tne

procedure is easy to use and computationally attractive. Several exampiles

and illustrations are provided.

2. The Simultaneous- Estimation Procedure

We suppose that x1 ,11.. constitutes a random sample from,
-l' EV -n

tentatively, a multivariate Gaussian density

f~zM,~) 1 2,QI" exp{-i.(~Le-L)TQ-i) (2.1)

where is a p)(l vector of location parameters, and Q-(dik) is a pxp

positive definite matrix of covariancest. The estimators for U and D, which

we shall term self-criticail, are determined from maximization of

torn_ _ 1~0~IQ 1 (2.2)

where IJ lO~&~d 23
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It is easily shown that

nlim i= c 0  lo f C, f(ILI,Q) ,
C-0

the likelihood function. Upon differentiation of (2.2) with respect to

and D, and setting the resulting expressions to Q, we find that the

estimators for m and Q are determined from the simultaneous zeros of

n ~ alog f.i
fi {(i+c) (2.4)

n alog f.
I fic ( (l+c) a (2.5)

i-l

where we have suppressed the arguments of the density and Q and written

f for f(xilp,D) and Q for Q(iD;c). Equations (2.4) and (2.5) may be

rearranged so that the estimators for m and D, say M and , satisfy the

implicit equations

(2.6)

ii 
v ic

xi ) (xi-) T vi

i r >= 1+c) (=_ 2.7)

where

c T -1
Vic =exp(-- (X!-jj) T (Si- ) (2.8)

:1
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The weighting in (2.6) and (2.7) reflects a self-weighting, namely by the

density iLself. Thus the assumed density and the data interact in pro-

ducing parameter estimators, and for this reason we have called the

resulting estimators self-critical.

The system (2.6)-1,2.7) defines a family of estimators indexed on the

user-specified constant c. We will presently address the question of

how c should be chosen for practical applications. It is recommended

that the estimators be computed numerically by a fixed point algo-

rithm with initial trial solutions the usual maximum likelihood

estimators of and D. Since the function 20 is concave (Rao, 1965,

pp. 447-449), c will also be concave for at least a neighborhood of c - 0c

and will, for this neighborhood, always have a unique solution. The

system (2.6)-(2.8) need not always have a unique solution in general

but we have not encountered any difficulties with the estimation procedure

in a wide variety of experiences with real and simulated data so long

as the trial solution for c > 0 was the maximum likelihood (c-0) estimators

and c was not too far from zero. As c moves further and further away from

zero, the procedure may break down numerically or provide multiple solutions.

It is easily verified that the expectations of the left-hand sides of

(2.4) and (2.5) are the zero vector and matrix respectively. In fact, the

procedure was developed to guarantee just this; see Paulson et al. (1982) for

further discussion.

3. Some Examples

A few examples at this point will be useful in showing the potential

of the family of estimators (2.6)-(2.8) in the analysis of multivariate data.

Atop
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Example 3.1

Consider the bivariate data of Figure 1 (Anderson (1958)). The

central cloud of points represents the original data to which a single

outlier has been added and rotated through 3600 in 90 increments starting

at the point labeled 1. Table 1 presents the results of the tradi-

tional maximum likelihood analysis applied to the original data plus

the single outlier contrasted with the self-critical analysis with c

.3. The effect of the single outlier on the estimate of the means UI

and P is slight for the c = .3 case. The effect of the single outlier
2 ad2 .

on the estimates of the variances a2 and a2 is substantial for c = 0

but is less than 23% for c = .3 regardless of where the outlier is

placed. The effect on the estimate of correlation for c = 0 is dramatic,

the estimate varying from .80 to .27. However, for c = .30 the esti-

mate of correlation varies only from .746 and .800. In this case,

graphical methods make it easy to see what is happening, but when the

dimensionality p increases, it becomes increasingly difficult to iso-

late problems, or more importantly, the elements of the data which just

might lead to the most interesting structure in the data. The automatic

weighting of the observations via the self-critical procedure provides

a means at higher dimensions for indicating unusual observations or

structure. The weight ^ for the outlying observations is the lowest
j.3

among all the weights.

Example 3.2

The extent to which the family of estimators (2.6)-(2.8) can be

useful in identifying structure is now considered. Each of the 25 3-vector

observations obtained by Billmeyer and Rich (1978) from color matching on

T
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TABLE 1

Percent Change of Estimators for Location, Dispersion and
Orientation Under Rotation of Outlier Through 9 Degree Increments

Parameter co 0 c .3

-1% ±0.3%

112 ±1% -0.3%

a2 -4% to +50% 0% to +23%

a 4 o+8%0 o+1
2
2 -4% to +88% 0% to +21%

p-63% to +9% -2% t9 +6%

I __ ____ ____ _ __ ____
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a MacAdam Colorimeter are shown in Table 2. The three variables are

the percentages of red, blue, and green in the final adjustment by the

observer in his attempt to match a given color. Analysis of similar

data, obtained from 22 sessions with a single observer, led Brown et al.

(1956) to conclude that the data were trivariate normal. [The data are

all ostensibly from a single trivariate population.] However, normal

probability plots of each variable would show that observations 16, 19,

20, 21, 22, and 25 seem the most unusual in one or more dimensions and

an Andrews-type plot corroborates this.

We applied equations (2.6)-(2.8) to these data, starting first at

c - 0 and then progressively increasing c through .1, .3, to .5. Several

observations are immediately highlighted by a dramatic change in the

final weights w. . Several components of the covariance matrix also

show marked sensitivity to the variation in c. As c increases to .5,

12 of the weights are reduced to low values. The results for c - .5

are also presented in Table 2. The low weights wj v ./v.
J,.5 j,.5 J,.5

in Table 2 pinpoint observations 14-25 for further study. This analysis

led to careful reexamination of the original data cards which showed

that the first 13 observations were those of a single observer, A say,

while the last 12 were those of 12 different observers.

Figures 2a, b, and c show all two-dimensional scatter plots of this

sample with observer A's observations labeled by A's and all other ob-

servations labeled by B' s. Greek letters represent various combinations

of observations which are too close to differentiate in a plot of this

scale. For example, £ represents 2 A observations and 1 B observation.
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TABLE 2

Sensitivity Analysis of Trivariate Data

c-.125 c-,.3 C".5

Point XlA A

No. 1 2 3 j,.125 J,.3 j,.5

1 86.07 58.27 30.72 .051 .064 0.102

2 83.45 56.50 29.45 .053 .077 0.115

3 82.07 55.43 28.71 .053 .075 0.097

4 83.58 56.32 28.85 .049 .060 0.043

5 82.95 56.21 30.12 .050 .065 0.053

6 83.62 56.38 29.51 .048 .059 0.086

7 86.25 58.39 30.92 .050 .063 0.092

8 84.79 57.62 30.15 .047 .046 0.050

9 82.87 55.99 29.87 .050 .065 0.064

10 79.74 53.89 27.70 .053 .055 0.036

11 81.84 55.26 29.10 .051 .065 0.091

12 84.10 57.08 30.08 .049 .061 0.085

13 86.24 58.34 30.51 .051 .061 0.087

14 80.55 54.32 26.23- .051 .057 0.2(-4)

15 81.08 54.54 25.32 .046 .036 0.2(-8)
16 101.2 70.38 33.97 .1(-4) .1(-18) 0.6(-41)

17 84.92 57.75 28.08 .033 .011 0.3(-6)

18 83.78 56.52 26.49 .044 .030 0.1(-8)

19 60.54 40.34 20.06 .020 .7(-8) 0.8(-14)

20 62.33 41.38 19.11 .024 .2(-6) 0.2(-13)
21 72.09 48.46 22.50 .042 .004 0.2(-8)

22 83.38 58.98 32.66 .5(-7) .8(-23) 0.2(-39)

23 81.45 54.53 23.78 .030 .007 0.6(-18)

24 78.89 53.37 26.21 .048 .039 0.2(-3)

25 92.50 61.76 29.02 .007 .3(-5) 0.1(-16)

.- s
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We observe that the observations of A are tightly grouped while the

remainder are more generally scattered. Thus the self-critical weights

were able to separate the observations by a single observer from those

of other origins, a feat which the eye would be hard-pressed to match

without the aid of the separate labels as given on the scatter plots.

Indeed, if the observations were not labeled according to their genesis,

one would be tempted to pick out the B's lying at the extremes as being

potential problem points and consequently miss the relevant structure

entirely. This ability to cluster is also implied by the form of the

influence functions which we present in a later section.

4. Some Asymptotics

The estimators and V defined by (2.4)-(2.8) are M-estimators for

location and the covariance matrix by virtue of (2.4) and (2.5). Further-

more, if the observations Lx are transformed according to y, = + Axi,

then - a + A and y = ADA . The estimator D is positive definite

with probability one as soon as n > p. However, some numerical diffi-

culties may surface if sufficiently many of the final weights v. are
A

approximately zero so that there are fewer than p vic which are larger than

zero. In this latter case Y wil" be algorithmically singular.

Standard arguments may be used to show that the estimators ji and

*defined as the consistent zeros of (2.4) and (2.5) are asymptotically

Gaussian.

Define . fc(iD) 1

cj c I [Q( ,,;C)IC/(l+c)
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Then the jth score function is - and E(-4 - 0. The self-

critical estimators ( are asymptotically Gaussian with mean 0

and variance-covariance matrix

so " Z#O 1 (4.2)

where the e,6, element of H and Z0 are respectively

22
"o8e , = E \a-a '! " ae,/ (4.3)

)E E a nE ) (4.4)

for any j = 1,2,...,n and O,O' ranges over U1,1 2 ,...,Ap and d1l, d12,

•..,dlp,d 22,...d2p . d . The expressions: (4.2)-(4.4) are evaluated at

the (unknown) true values of j! and D, p, and D0 . When c - 0 in (4.2)-

(4.4) the expressions are evaluated by a limiting argument and all reduce

to the usual maximum likelihood expressions.

The covariance matrix C may be written as

0 B

where A is the pxp covariance matrix for the estimator Pand B is the
A

hp(p+l)xp(p+l) covariance matrix for the estimator D. The off-diagonal

blocks of 0 indicate that the estimators 0 and D are asymtotically inde-

pendent. The matrix 6 may be easily evaluated at the mltivariate normal

distribution and is given by

A - (l+)+ 2 (l+) (p+2)D (4.6)

with elements aij - cov(i, rj). The form of 9 is considerably more

complex and we evaluate it only for particular cases.

.............................
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We now give the general form for the matrix B at the multivariate

normal distribution with mean vector 0, covariance matrix I. The

particular variances and covariances will be indicated by the subscripts

used. We have

Ba2 - (3c 2 + 4c+2)(c+l)P 2 (2c+l) -  4  for j1l,...,p;

p+4 -4z (p+4)
Ba2 - (c+1) (2c+l) , for j k;

jk (7

B.fjk M c2 (c+l)p+2 (2c+l)-(p+4) , for j k,(4.7

- - - 0 f for all other cases.diid k~t

Let us consider now the vector of estimators of covariances

III d 12' d2 2 ' At the bivariate standard normal with correlation p,

the matrix B of (4.5) is given by (4.2) with

P- 2p 2

H n K 2P -2-2P 2  2 (4.8)

an P2 2p -1

3c 3 +4c+2 -2p(3c 2 +4c+2) c2+2p (c+l) 2

K0 2 -2p(3c2+4c+2) 4(c+I)2+4p 2(2c 2+2c+l) -2p(3c 2+4c+2) (4.9)
2 2 2 22c +2p (c+l) -2p(3c +4c+2) 3c 2+4c+2

whereK, (2 p I- c-2(c+l)-2 K k(2, )-2c I-c-2 (2c+11-3
.~* ~1 a~n d K~2 -~(2 l r ~ D J (~2



The general form of (4.8) and (4.9) is quite complicated and is not given

here. It can be approximated in practice from the asymptotic results,

namely for (4.2)-(4.4) evaluated at V.

Table 3 provides the asymptotic efficiencies of the self-critical

estimators (c>O) relative to maxim likelihood estimators (c-0) for the

estimators and d for selected values of the constant c. For fixed c,

there is a decrease in the asymptotic relative efficiency for the estimator

p as the correlation P increases. The decrease becomes more pronounced

for larger values of c. We will see in the sequel that the relative

efficiencies of the self-critical estimators approach their asymptotic

relative efficiencies rapidly. For samples as small as n = 20, the rela-

tive efficiencies are about equal to those given in Table 3.

Figures 3a, b, c provide the asymptotic relative efficiences of the

self-critical estimators Pit dii' p as a function of c and dimensionality

p when sampling is assumed to be from the p-variate circular normal dis-

tribution. For fixed c we see that the efficiency decreases as p increases

and that efficiency decreases as c increases. For a given value of c,

variance and correlation estimators are less efficient than those of

location. It should be emphasized that these figures pertain to the

p-dimensional normal with covariance matrix I only. The efficiencies for

covarlance estimators will be somewhat lower in the general case as is

indicated in Table 3. Maronna (1976) reports asymptotic relative effi-

ciencies for the multivariate version of Huber's proposal 2 at the unit

spherical normal for Winsorization proportions q - .2, .3, .5, 1.0.

It is interesting that, for fixed q, the efficiencies increase with

increasing dimensionality.
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5. Influence Functions

The influence function is the most important tt of qual-

itative zobustness since many other robustness characteristics of an

estimator may be derived from it. The influence function characterizes

the (asymptotic) response of an estimator to an additional observation

as a function of where the observation falls. The shape of the influ-

ence function is determined primarily by the score function

for 6 - or D. In order to guarantee that single (or multiple) observe-

tions do not exert an excessive influence on the response of the esti-

mator to single observations, we require that the influence function be

bounded. It is also advantageous, in our opinion, if the influence

functions are re-descending to zero.

The influence function for )I and D^ are both bounded and re-descending

to zero for c > 0. Let I denote the function when argument x of (4.1)CZ
is replaced by the non-random vector x. The influence function for

at the p-dimensional normal distribution with parameters p and D is

given by al 1
c

IC -(5.1()

s (,.)'(p+2) T-

for any :j - 1,2,...,n. This influnce function is illust ted in

rigwm 4a en b where we ehiibit contours of the first ocammt

*! of the veatr (5.1) with a - rod - re etly at the

standerd biweriate nosmel distzibutiom with set. oraation.

"1096 fiUe d other figees not ive here indicate that to eese a

greater degeeof rostmess we Choen a 2ge~ar VaLue of a. lme o
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Figure 4

-65

(a) C

-4

(b) a It
Influence curve contours for the self-critical location estimate, Pi at the
bivariate standard normal distribution with correlation p *0
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for the first component of the self-critical estimator for the standard

bivariate normal with p - .9 and c = is shown in Figure 5. The nearly

elliptical contours have the line of perfect positive correlation as their

major axis. Moderately distant observations that are close to this axis

ha-3 greater influence on the location estimator than those that are

closer but along the minor axis. Note also that the component x2 of x

has an influence on the estimator the first component of P.

The influence function for the self-critical estimator 6 cannot be

written in simple form in general. For the p 2 case we illustrate it

in terms of the vector of estimators ^ = (VllV12,v22 for the standard

bivariate normal distribution with correlation p. It may be shown that

( (1+c)x 12 - 1

IC , N2(01, = (I+c)2 (l+c)x 1x2 - 2 K T -lx)

(l+c)x 2 - 1

where P = . We present contours of this function for d. with

c = for correlations P = 0 and .9 in Figures 6a and b. In Figures

7a and b we show contours of the influence function for the self-critical

estimator of P under the same conditions.

All the influence functions are bounded for c > 0 and are characterized by

closed contours. The closed contours indicate that the self-critical

procedure will be useful in clustering data. The clustering nature of

the estimation procedures explains why we were able to identify the

13 observations by the same individual in example 3.2. Just as in this

example, the procedure will generally focus on the tightest cluster of

observations as the parameter c is increased. The estimation procedure
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with correlation P 0.9, c
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may also be useful in classification problems, but we do not pursue the

subject here.

Devlin et al. (1975) present the influence functions for the maxi-

mum likelihood estimator of P and a 56 trimmed estimator. Neither of

these influence functions are bounded, and the trimmed estimator is

unable to limit the influence of observations in certain regions of

the x space.

6. Monte Carlo Study

It has been long recognized that some alternative univariate esti-

mators such as the a-trimmed mean lose little efficiency for an exactly

normal parent but exhibit nuch better and more stable performance under

departures from it (Huber, 1972, for example). To evaluate the perform-

ance of the estimators of section 2 with c > 0, a limited Monte Carlo

study was conducted. Simulated bivariate normal samples were used to

gauge losses in efficiency and slightly non-normal samples were used to

meaaure stability and performance. The performances of the usual vector

of sample means and covariance matrix, the vector of 10% (on each side)

trimmed means combined with a covariance matrix estimator employing 5%

(on each side) trimmed variances and the estimators and ~ for several

values of c are examined under several sampling situations.

To study the performance of the selected estimators in sampling from

normal populations, 100 samples of size 20 from each of the bivariate

normal populations with " - -l a 0, a1 2/a2 - 0.5, 1.0, 3.0 and p - 0.0,

o.5, 0.9, 0.99 were constructed. The same random number seed was used to

generate samples for all correlations and variance ratios.
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Tables of the Monte Carlo means and variances of the population

parameters estimated are presented in Table 4. In this and the other

tables of this section MEMN represents the sampl, mean vector or the

usual sample variances and correlations, TR. xN represents the 10%

on each side) vector of trimmed means or the 5% trimmed variances and

1 1 1correlations and SC ) SC(i), SC(r) represent the self-critical Osti-
1 1 1

mators of section 2 with parameters c - , j, respectively. All
estimators provide reasonable estimates for location, but SC(-) and

2

TR. Mean have slightly inferior values vis-a-vis the other estimators.
1

The c - 0 and c = - cases have the smallest variances. Comparisons of

the Monte Carlo means and variances for the variance ratio and corre-

lation yield similar conclusions. Note that the efficiencies computed

by dividing the c - 0 variances by the c > 0 variances are generally

good approximations to the values given in Table 3. An exception

1
occurs for c - - for the estimat6r p of correlation. An analogous char-

acterization of the estimators is drawn if mean squared errors are used

instead of variances, but we do not present the results here.

To study stability of the estimators under slight departures from

a Gaussian parent, bivariate norual samples were constructed and con-

taminants of one of two types were added to the basic normal variates.

In the first case, one simulated bivariate Cauchy was added to standard

bivariate Gaussian samples of size 19. In the second case, a mixture of a

random number r of bivariate Gaussian variates divided by a uniform deviate

.. ... .U.. . .. ....... ....... ..i' t il ..... . '~rl ll .. .. .... . .. .... . . .iT -
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and n - r bivariate Gaussian variate was constructed. The number r was

generated from a binomial distribution with parameters n = 20 and

probability .05. The parameters of the n - r bivariate Gaussian variates

were 2 - PI - 0, 12 /a22 - 1 and 3, and p - 0, .5, .9, .99. Table 5

depicts the Monte Carlo means and variances for each estimator, based on

25 samples generated from each population. The Monte Carlo means for

location, variance, and correlation show that the self-critical estimators

and the trimmed estimators retain their integrity with respect to the

basic underlying assumption of Gaussianity. This is, however, not as

important as the fact that this stability concerning the basic cluster

allows potential contaminants or model departures of various types to

be identified.

A range of experience with both real and simulated data corroborates

the above results. The estimators perform well in practice, especially

when used in the context of a sensitivity analysis.
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7. Multivariate Regression

We now show that structured multivariate data, specifically a linear

model, may be naturally treated by the self-critical approach of section 2.

Let y ' Y2' , yp be NXl vectors representing N independent observations

on each of p correlated random variables. We assume the model repre-

sentation

Y. -X0 +U , -1,2,..., p (7.1)

where X is NXq and considered given, 0 is qXl and unknown, and U is

an error or disturbance vector which is distributed as Np (Q,). For

a single value of J, (7.1) is a univariate regression model. Define

X a (Xl' X2' "-'" XP)" U- (u-l' -2' "'" u )' R'  (@l' @-2P ... 0
(Nxp) (Nxq) (qxp)

and then (7.1) may be written as

Y - XB + U . (7.2)

We wish to estimate D and B. Let y , x and u, denote the row vectors

of Y, X, and U of dimensions Ixp, lxq, and lxp respectively. Since

ul i- Bthe density of the Li is given by

The obJective function to be maximized for B and D is, from section 2,

r ]
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On differentiating with respect to S and 0, setting the resulting ex-

pressions to 0, and solving we find that B and D satisfy the implicit

equations

(7.5)

and

"i(lxc) i- t 1B-!) ,(7.6)

where

w f(x ~) ,il2..N. (7.7)

i N

it is clear that if c - 0, these equations reduce to the usual maximum

likelihood equations. For c > 0, the estimators are not equation-by-

equation univariate estimators since the covariance structure of D is now

allowed to play a role in the estimation process. It is interesting that,

from (7.5) to (7.7),

N N N

ti- ijij t- ! X - K
i-l ini inl(7.8)

In the Su manner ve have

- 0 . (7.9)
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Ii

The equations (7.8) and (7.9) are weighted versions of the usual ortho-

gonality relations associated with the maximum likelihood or least

squares procedures.

This regression procedure with c > 0 is useful in providing pro-

tection against difficulties in the y values, for example y outliers,

but is not especially useful if there are difficulties associated with

the factor space, for example, x outliers. This is easily seen by

rewriting (7.5) in terms of the score function for B. This score

function is bounded and re-descending in the residuals y- iB but is

unbounded in the xi . Thus a single bad xi value may ruin an entire

regression analysis. An extension of the approach we provide here will

be useful in dealing with this problem, but we do not pursue it here.

Belsley, Kuh and Welsch (1980) provide a nice discussion of the uni-

variate version of this problem.

For completeness, we provide an example in which we compare the

regression equations obtained by maximum likelihood and those obtained

from (7.5)-(7.7). It is found that the solutions are sensitive to the

change in c from 0 to 1 and thus there are some potential difficulties
d 4

with the data or the model or both. It is our job, having been fore-

warned, to find out where the difficulties might be. However, this is

not always possible.

Zxale 7.1: Data extracted from a study of the effects of a change

in environment on blood pressure is included in Ryan et al. (1976).

In this study, anthropologists measured the blood pressure and other

characteristics of Peruvian Indian males ore age 21, who had migrated
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from primitive environments at high altitudes to modern lower altitude

areas of Peru. Previous studies in Africa suggested that such migra-

tions might increase blood pressure at first, but that the blood

pressure would tend to return to normal with time. The 39 observa-

tionq included in this reference are listed in Table 6; the dependent

variables are systolic and diastolic blood pressure and the independent

variables chosen from those available are F, the fraction of life in

the new environment, W, the weight in kilograms, and S, a skin-fold

measure of general obesity.

We will consider the linear model containing the aforementioned

independent variables and a constant term. The MLE for the full model are

r55.51 33.21
B ,-28.41 -9.26 A 85.62 28.58

1.39 0.74 28.58 208.36
-0.26 0.001J

The order in the matrix of parameter estimates is constant, fraction of

life, weight, and obesity measure with the first column representing the

systolic blood pressure equation and the second column representing the

diastolic blood pressure equation. The self-critical estimates with

parameter c - are

4

58.59 34.91j
1 -1.08 76.98 1726

1.28 0.5 17.26 65.57

-02 02

iA
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The parameter estimates obtained via the two methods are not

strikingly different. The only obvious difference is in the estimate

for the fraction of life term for both systolic and diastolic blood

pressure equations. Table 6 also includes the weight assigned to

each observation by the SC procedure. Observations 4 and 1 received

the lowest final weights, Q. . The 22-element of the covariance'C

matrix is quite sensitive to changes in the value of c an. the resid-

uals of Table 6 confirm this.

The negative coefficients for the fraction of life in the new

environment support the results of the African studies, showing that

blood pressure decreases with the length of time in the new environ-

ment. However, it appears that there is less of a decrease in the

diastolic measurement than in the systolic measurement. As expected,

weight has the effect of increasing the blood pressure measures, but

it appears to have a greater effect on the systolic measurement.

The four term linear model is not entirely appropriate since there

are still patterns in both the c = 0 and c = - residuals. In this case
4

examination of the c - 0 residuals would have led to the two potential

problem points, 1 and 4, that the final weights w. .25 have flagged

for further scrutiny, but this will frequently not be the case.

Our procedure may be directly applied to multivariate analysis of

variance. A generalized inverse may be used in place of the inverse of

(7.5) but a different, more direct, approach seems preferable.

I

t
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8. Discussion

We have presented a procedure for the analysis of multivariate normal

data which is at once very general and easy to use. We have successfully

used it in a variety of applications. It has proved to be helpful in the

identification of potential outliers and in the process of model evolution.

The procedure will tolerate large amounts (more than 100%) of contamination,

provided a significant portion of it is not all tightly concentrated in

a single area of p-dimensional space. This is of little consequence in

any event because the final weights will show a dramatic sensitivity to

changes in the index c and the source of the sensitivity should Plways

be sought. The extent to which the index c may differ from zero is a

function of the dimension p and the sample size n. For example, if

p - 10 and n = 200, the procedure is likely to break down with c > .15.

It is highly recommended that the procedure proposed be used in an

exploratory fashion.

I, i j
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